T. Buck Construction, Inc.

249 Merrow Road, Auburn, Maine 04210-8319 (207) 783-6223 * (FAX) 783-3970

TRAFFIC CONTROL PLAN

Vermont Agency of Transportation

Bridge Replacement in town of Burke, VT BRF 0269(13)

OF VERMONAL SUPPLIES TO SUPPLIES TO SUPPLIES THE SUPPLIES

Submitted 3/30/15 REVISED 4/20/15

A. DESCRIPTION OF PROJECT:

This project involves the removal of bridge 13 and portions of its abutments and foundation. Bridge 13 will be replaced with a precast structure, spanning 56 Feet over Dish Mill Brook, on new footings along the same alignment. Bridge 13 is located in the town of Burke, on VT Route 114, approximately .47 miles easterly of the Lyndon/Burke Town line. The width of the bridge will be increased to 36 feet – 10 inches.

This plan will illustrate T Buck's intensions on how to safely move traffic and pedestrians through or around the project site at each stage of the process. In General, T Buck will attempt to minimize the impacts to the traveling public by channelizing them around the work and away from the project as the contract specifications describe.

B. KEY PERSONNNEL CONTRACT INFO

Site Superintendent, T Buck Construction:

Harry Pottle 207-754-2169

harry@tbuckcon.net

Project Manager, T Buck Construction:

Brian Emmons 207-212-0960 (cell)

207-783-6223 x 205 (office)

brian@tbuckcon.net

Resident Engineer, Vermont Agency of Transportation:

Kevin McClure 802-917-4624 (cell)

TBD (Field office)

Kevin.McClure@state.vt.us

Lyndonville, VT Police Station

Non-Emergency 802-626-1721

Emergency 9-1-1
 Burke, VT Volunteer Fire Brigade

Non-Emergency 802-626-5484

■ Emergency 9-1-1

Lyndonville Rescue

Non-Emergency 802-626-1101

■ Emergency 9-1-1

Note: other individuals may be added as necessary.

C. SCHEDULE OF PHASING

This project will be divided into three phases: Pre-closure, Closure, and Post Closure. The phases are described below and shown on the applicable sketches in the appendix of this plan.

• Pre-closure: Mid April – May 25th

<u>Description</u>	Start	Stop
Project Survey / Layout	4/20	4/24
Installation of erosion control devices	4/20	4/23
Installation of traffic control devices	4/20	4/24
Installation of temporary bridge	4/27	5/1
Pre-excavation of abutment 2 piles	5/4	5/8
Installation of abutment 1 piles	5/4	5/9
Installation abutment 2 piles	5/11	5/16

Closure: May 26th – June 15th
 See Critical Path Method Schedule (spec section 900.645)

• Post-closure: June 15th – August 22nd

<u>Description</u>	Start	Stop
Form and place retaining wall footing	6/15	6/26
Form and place retaining wall	6/29	7/3
Form and place sidewalk (on bridge)	6/15	6/19
Form and place Northern Texas rail	6/22	6/26
Form and place Southern Texas rail	6/29	7/3
Form and place C.I.P. sidewalks	7/6	7/17
Install guardrail and approach rail	7/20	7/24
Remove temp traffic barrier	7/24	7/24
Final Pavement	7/27	7/30

D. EXPLANTION OF PHASING

Pre-closure:

During this phase, traffic will be maintained in one alternating lane controlled by flaggers during daytime hours and maintained on the existing two lane alignment at night or whenever possible.

The construction activities related to traffic during this phase will be limited to day time hours and will consist of installing the temporary traffic bridge and the pre-excavation of abutment 2 piles and pile installation. The contract requires a minimum of 4 of the 6 abutment 2 piles be installed prior to the bridge closure period. The contract also states that daily lane closures for the purposes of pre-excavating and installing abutment 2 piles can occur for a maximum of 2 weeks leading up to the bridge closure.

T Buck plans to install a one lane temporary bridge immediately upstream of the existing bridge to accommodate the single lane of traffic during the day time. The sketch and calculations in appendix B of this plan depict the location and details for the temporary bridge. T Buck will need brief sporadic lane closures during the installation of the temporary bridge before the pile work begins. Brief sporadic lane closures are defined to be short in duration (2-3 hours) and only when necessary (i.e. during equipment moves, material delivery, and launching of temporary)

During this phase pedestrians will either utilize the existing bridge (night time) or the temporary bridge (day time). Flaggers will control the jobsite during day.

The entire project will be ADA compliant at all times and during all phases of this project

The intent is to have all traffic be controlled by flaggers. Essentially all traffic will stop or move through the jobsite very slowly while the one lane temporary is active. Pedestrians and bicycles will be given a safe opportunity to cross the bridge as well.

Emergency vehicles will be given immediate precedence to move through the site at all times. And DMV will be notified of any / all restrictions through or around the jobsite.

Closure Period:

During this phase, all vehicle traffic will be detoured around the project site while the bridge is replaced. The detour plan is given in the contract documents and can be seen on plan sheet(s) 21-23. Those applicable contract sheets can be seen in appendix B of this plan. A detailed description of the vehicle detour can be seen in section G of this plan

During this phase pedestrians and bicycles will be able to utilize a temporary pedestrian bridge. The bridge will be located upstream of where the temporary bridge was during the pre-closure phase. Temporary ramps will be constructed up to and off of the bridge to minimize any unnecessary earth disturbance outside of the construction limits. T Buck has obtained permission from abutting land owners for use of a walkway during the bridge closure. Typical land use agreements will be available upon request. Vtrans Off-site Activity submittals have been reviewed and approved. The temporary

approaches will consist of gravel placed on filter fabric to allow for a clean separation.

Post Closure:

This phase will begin with the opening of the new bridge. T Buck intends to open the bridge to traffic using temporary traffic barrier to delineate 2 lanes 11' wide as described in the contract documents. The typical section can be seen in the picture below. During daytime hours, traffic may be reduced to one lane during concrete placements, material delivery, subcontractor work, etc. each night, the bridge will be opened to the 2 specified 11' lanes.

The construction activities during the phase will include the forming & placing of the sidewalk(s) and Texas style bridge railing. It will also include the forming and placing of the retaining wall for the bed & breakfast located near station 26+50 (LT). Once the guardrail and approach railing is installed, the temporary traffic barrier will be removed. As soon as the project is relatively complete in terms of curbing, railings, etc, the final lift(s) of pavement will be installed full width.

Pedestrians will use the new bridge to move through the project limits and when the barrier is removed, the new permanent sidewalks will be available for use.

E. TEMPORARY TRAFFIC CONTROL DEVICES

Site Specific

The temporary traffic control devices will be installed in accordance with the current version of the MUTCD and will generally consist of the following

Typical Approach Signing
Temporary Traffic Barrier (Jersey barrier)
Type III Barricades
Traffic Drums and/or Cones

Detour

The detour signing will be layout in accordance with the plans and specifications. The resident engineer will in involved with the layout and approve any/all changes and locations of each sign assembly

Portable Changeable Message signs will be placed in the general location shown on the plans. Again, the resident engineer will have final approval of locations. The signs will switch between two screens. And the messages can be seen on sheet 23 of the contract drawings. The message may be changed if requested by the resident engineer

Miscellaneous

The site superintendent will have an inventory of basic signs to replace any that are broken or damaged throughout the project. In conjunction with the resident engineer, we will work to fabricate and install any new or applicable signs or devices that are necessary after the typical devices are installed. Ultimately we will work with the town and all officials to make sure the traveling public is moved through or around our project safely and efficiently.

F. FLAGGING

The flagging subcontractor that will be utilized on this project is ADA Traffic Control and is located in Bridgewater, VT. Daily and/or weekly slips will be turned into the resident engineer for payment under item 630.15. In general a discussion will take place with the resident before the flaggers are scheduled so that all interested parties will be aware and may comment prior to implementing flagging operations.

The flagging operations should be limited to the pre-closure and post-closure periods.

Flaggers will be equipped with radios and will be able to communicate with all flaggers to properly direct traffic through the project site.

G. PECIAL DETOURS

Onsite Temporary Bridge:

The temporary bridge will be installed so to keep traffic away from pile driving operations during the pre-closure phase. When the temporary bridge is no longer needed for traffic, it will be relocated upstream of the bridge and utilized as a pedestrian bridge during the closure period.

During the closure, traffic will be maintained on a regional detour via routes VT114, VT 105, VT 5A, VT 16 and US 5 between East Burke, Brighton, Charleston, Westmore, and Lyndon. Interstate 91 between exits 23 and 25 will also be used. The off-site vehicle detour is shown in great detail on plan sheets 21-22 of the contract drawings. For reference, those sheets are included in this plan in Appendix B

H. NIGHT WORKING PLAN

There is no night work anticipated during the pre-closure period.

During the closure period, all night work will be performed in accordance with local and state regulations including adhering to the approved lighting plan.

There is no night work anticipated in the post-closure period.

APPENDIX A

SIGN SCHEDULE

IMAGE	MUTCD ID NO.	QUANT.	SIZE	TEXT	LOCATION ON PROPOSED CONDITIONS PLAN
ROAD WORK AHEAD	W20-1	3	48"X48"	ROAD WORK AHEAD	3
ONE LANE ROAD AHEAD	W20-4	2	48"X48"	ONE LANE ROAD AHEAD	2
END ROAD WORK	G20-2A	2	48"X24"	END ROAD WORK	4
	W20-7A	2	48"X48"	FLAGGER SYMBOL	1
BE PREPARED TO STOP	W3-4	2	48 x 48	BE PREPARED TO STOP	NONE, SIGN WILL BE IN INVENTORY IN CASE OF EMERGENCY
BUMP	W8-1	2	48"X48"	BUMP	NONE, SIGN MAY BE USED AFTER CLOSURE PERIOD
Ø À DETOUR	M4-9AR	2		PEDESTRIAN DETOUR	
SIDEWALK CLOSED AHEAD CROSS HERE				SIDEWALK CLOSED CROSS HERE	
ROAD CLOSED AHEAD	W20-3			ROAD CLOSED AHEAD	

NOTE: 1. TYPICAL SIGNGS SHOWN. Other signs may be used as needed or as directed by the Resident Engineer. NOTE: 2. Detour sign package included in Appendix B – Plan and Details (see sheet 23 of contract drawings.)

APENDIX B

PLANS AND DETAILS

EXISTING CONDITIONS

PRE-CLOSURE PERIOD

CLOSURE PERIOD

TEMPORARY PROFILE

| HORIZONTAL: |"=20'-0" | VERTICAL: |"=4'-0"

TYPICAL TEMPORARY APPROACH SECTION

(not to scale)

Dimension A- Additional Width provided on the Left for off tracking vehicles
Dimension B- Additional Width provided on the Right for off tracking vehicles

STA.	<u>DIM A</u>	<u>DIM</u> B
<i>I+00</i>	n/a	n/a′
<i>l+50</i>	12.0'	0.0'
2+00	6.5′	1.0'
2+50	0.0′	0.0'
3+00	5.0′	0.0'
3+50	12.0′	0.0′
4+00	n/a	n/a

GENERAL NOTES

- 1. THESE PLANS ARE NOT INTENDED TO BE USED ALONE BUT ARE INTENDED TO BE WORKED WITH THE CONTRACT DOCUMENTS FOR THE BRIDGE IN QUESTION VTRANS PROJECT NUMBER BRF-0269(13)
- 2. STEEL GRADE 50 KSI YIELD MIN.IN NEW OR GOOD USED CONDITION FOR DISTRIBUTION BEAMS STEEL AS PROVIDED BY ACROW FOR ACROW 300 BRIDGE

PEDESTRIAN BRIDGE STEEL TO BE ASTM A7 GRADE 33

- 3. REPORT ANY OBSERVED DISCREPANCY BETWEEN ACTUAL FIELD CONDITIONS AND THESE PLANS TO THE TEMPORARY BRIDGE ENGINEER OF RECORD IMMEDIATELY
- 4. DO NOT PROCEED WITH ANY DEPENDENT WORK UNTIL ANY SUCH REPORTED DISCREPANCY IS ADDRESSED TO THE SATISFACTION OF THE TEMPORARY BRIDGE ENGINEER OF RECORD.
- 5. FOR ABUTMENT NOTES REFER TO PLAN SHEET #2
- 6. CONSTRUCT TEMPORARY APPROACH FILLS FOR PEDESTRIAN BRIDGE SUCH THAT THEY ARE ADA COMPLIANT. CONSTRUCT THEM OF GRANULAR FILL ON TOP OF GEOTEXTILE. INSTALL SILT FENCING AS REQUIRED ON EACH OF THE 4 CORNERS OF THE BRIDGE APPROACHES, TIE SILT FENCING INTO TEMPORARY BACKWALL AT PED BRIDGE.

SHEET NUMBER

CONSTRUCTION,

RED FOR:

P.E. NUMBE

T LIMIT ADDED

PLAN NOTES

DETOU ENERAI

, Y GJ

EMPORARY

TOP OF DISTRIBUTION BEAM ELEVATIONS: ABUTMENT #1 - 826.69 ABUTMENT #2 - 827.97

(vertical curve is approximated at each abutment)

GENERAL NOTES

- 1. STEEL HP SECTIONS SHALL BE IN NEW OR GOOD USED CONDITION
- 2. TIMBER BACKWALL SHALL BE CONSTRUCTED OF 8X8 TIMBERS USE SPF #2 OR EASTERN HEMLOCK #2 AT THE CONTRACTORS OPTION. BACKWALL MAY BEAR AT ENDS OF TRUSSES, EXACT DETAILS TO BE DETERMINED IN THE FIELD.
- 3. CRANE MATTS SHALL BE INSTALLED LEVEL ON UNDISTURBED NATIVE SOIL OR ON FULLY COMPACTED GRANULAR BORROW. CRUSHED STONE MAY BE USED IN LIEU OF GRANULAR BORROW, BUT ANY FILL MATERIALS SHALL BE FULLY COMPACTED IN ACCORDANCE WITH INDUSTRY STANDARD OF PRACTICE FOR TEMPORARY BRIDGE ABUTMENTS.
- 4. CRANE MATTS SHALL BE SOUND MATERIAL EITHER NEW OR GOOD USED CONDITION AND SHALL BE MIXED HARDWOOD, MIXED MAPLE OR MIXED OAK. CRANE MATTS SHALL BE THROUGH BOLTED AND SHALL BE A MINIMUM OF 12" THICK.
- 5. REPORT ANY OBSERVED DISCREPANCY BETWEEN THESE PLANS AND ACTUAL OBSERVED FIELD CONDITIONS TO THE TEMPORARY BRIDGE ENGINEER OF RECORD IMMEDIATELY.
- 6. DO NOT PROCEED WITH ANY DEPENDENT WORK UNTIL ANY SUCH REPORTED DISCREPANCY HAS BEEN RESOLVED TO THE SATISFACTION OF THE TEMPORARY BRIDGE ENGINEER OF RECORD.
- 7. THESE PLANS ARE NOT MEANT TO BE USED ALONE, BUT ARE TO BE WORKED IN CONJUNCTION WITH THE CONTRACT PLANS FOR THE HELMS BRIDGE REPLACEMENT.

BURKE, V'I' R'I'E 114
VER DISH MILL BROC
TEMPORARY BRIDGE ABUTMENT
AND SECTION

SHEET NUMBER

2

Temporary Bridge -Rte 114 over Dishmill Brook Supporting Calculations

In the Town of

Burke

032-br-15

Prepared for:

TBuck Construction Inc

Calderwood Engineering etc

March, 2015

CHAPTER EIGHT - CONSTRUCTION **GENERAL** Acrow Panel Bridge is supplied in four roadway widths. Standard Extra Wide Single Lane. Ultra Wide Double Wide Two Lane. Roadway widths and clearances are shown below. 12'4" 3.76m 11'3" 3·43m **STANDARD** 15'8" 4·78m 13'6%" 4·13m **EXTRA WIDE** 17'11%" 5 48m 15'101/2" 4 85m **ULTRA WIDE** 24'11" 7·60m 23 81/2 7 23m **DOUBLE WIDE** Α Page 8.1

Standard, Extra Wide and Double Wide bridges are for Highway use and are supplied with either light or heavy decking to suit various Highway Loading Specifications.

Extra Wide bridges can also be supplied with Super Heavy decking where very heavy axle and wheel loadings are involved.

The Ultra Wide bridge is specifically designed for the latest types of heavy earth moving plant and is therefore usually only supplied with Super Heavy decking.

Single lane Highway bridges can be built in all available forms of construction, which are as follows:—

REINFORCED

TABLE 7 - Continue	d
WEIGHTS OF BRIDGES	(long tons)

	TWO END BAYS	ONE INTERNAL BAY	EXTENSIONS	,
TRUSSES ONLY SS SSR DS DSR TSR ODD R TD TDR OD TDR OD	2.30 2.50 3.99 4.39 5.47 6.07 7.12 7.92 6.39 6.79 9.08 9.68 11.83	0.58 0.98 1.18 1.98 1.74 2.94 2.30 3.90 2.36 3.16 3.48 4.68 4.68		
QDR STD LS STD LT STD LTW/oT STD HS STD HT STD HTW/oT EW LS EW LT EW LTW/oT EW HS EW HT EW HTW/oT EW SHS EW SHT EW SHS EW SHT DW LS DW LS DW LT DW LTW/oT DW HS DW HT	2.76 2.48 2.08 3.32 3.39 2.60 3.36 3.17 2.54 4.05 4.13 3.20 5.10 5.20 4.26 7.50 7.89 7.70 6.49 9.36 9.70	6.22 1.62 1.44 1.17 1.94 2.00 1.47 1.97 1.85 1.43 2.37 2.42 1.80 2.94 3.01 2.38 4.20 4.43 4.31 3.50 5.25 5.49	1.05 0.85 0.58 1.20 1.24 0.72 1.24 1.10 0.68 1.42 1.47 0.84 1.79 1.84 1.22 2.07 2.10 1.94 1.14 2.39 2.61	
DW HTw/oT	7.90	4.28	1.41	6

THE EXIL

TABLE 7 - WEIGHTS & VOLUMES OF BRIDGES

Key to Symbols

STD Standard = Extra Wide ΕW UW = Ultra Wide Double WideLight Steel Decking DW LS LT — Light Timber Decking $LTw/oT = Light \, Timber \, Decking \, excluding \, Timber \, components$ — Heavy Steel Decking HT = Heavy Timber Decking
HTw/oT = Heavy Timber Decking excluding Timber components Super Heavy Steel DeckingSuper Heavy Timber Decking SHS SHT SHTw/oT = Super Heavy Timber Decking excluding Timber components

NOTES

- 1. The weights and volumes of Two End Bays include End Posts Baseplates Bearings etc.
- 2. When calculating bridge weights for launching purposes the bridge should be considered as being made up of Internal Bays only.

TABLE 8 – PROPERTIES OF BRIDGES AND COMPONENTS RRIDGES

DUINGES		ſ		Z
CONSTRUCTION	(ins4)	(cm²)	(ins³)	(cm³)
SS	13600	566070	446	7308
SSR	31300	1302800	906	14846
D\$	27200	1132140	892	14617
DSR	62600	2605600	1812	29693
TS	40800	1698200	1338	21925
TSR	93900	3908400	2718	44540
QS	54400	2264290	1784	29234
QSR	125200	5211200	3624	59380
DD	116688	4856900	1912	31331
DDR	249488	10384440	3838	62890
TD	175032	7285350	2868	47000
TDR	374232	15576650	5757	94340
QD	233376	9713800	3824	62664
QDR	498976	20768880	7676	125780

Light Decking

- a. American Association of State Highway Officials (AASHO) loading HS20-44.
- b. Up to a 14 long ton (14200kg) axle load (with maximum of 7 long ton (7100kg) wheel) at not less than 5ft (1.52m) spacing. Heavy Decking
 - a. British Standard (BS) 153 Pt. 3A HA loading.
- b. Up to 45 Units of Type HB loading to BS153 Pt. 3A.

Super Heavy Decking

- a. Extra Wide Decking
 - 1. Up to 50 ton (50,802kg) axle (plus additional 33% Impact factor).
- 2. Four wheels/axle 11ft 6in (3.5m) outside of tyres to 3ft 10in (1.17m) inside of tyres (tyre pressure not exceeding 70 psi).
- 3. The number of trusses should be such that individual transom seat loading does not exceed 14 tons (14224 kg.).
- b. Ultra wide decking
 - 1. Up to 60 ton (60,963kg) axle (plus additional 33% Impact Factor).
- 2. Two wheels/axle, 8ft 9in (2.67m) centre-to-centre of tyres (tyre pressure not exceeding 55 psi).
- 3. The number of trusses should be such that individual transom seat loading does not exceed 14 tons (14224 kg.).

Moment of Inertia of Panel = $Ixx = 6800in^4 = 282,035cm^4$

Section Modulus of Panel = Zxx = 223in³ = 3654cm³

Permissible Bending Moment under static conditions = 330 long tons feet (1002 kNm)

Permissible Bending Moment under dynamic conditions = 245 long tons feet (744kNm).

Permissible stresses on Transoms and Deck Units=14.2 tons/in2.

TABLE 8 - Continued COMPONENTS AB1 or AB16 Panels 60T (60963kg) 12½T (12700kg) 60T 12½T 12 ½T 12½T 14T (14224kg) 14T 41T (41658kg) 7½T (7620kg) 12½Ť 12½T (12700kg) 12½T

7½T

TABLES 9, 10, 11, 12, 13 & 14 – SHEAR AND BENDING MOMENT CAPACITIES

Tables 9, 10, 11, 12, 13 and 14 are based on the following permissible bending stress and shear capacities:

a) Permissible Bending Stress fb = $13.2 \text{ tons/in}^2 (2079 \text{ kg/cm}^2)$

b) 1. Permissible Shear Capacity single storey/truss = 25 tons (25400 kg)

2. Permissible Shear Capacity double storey/truss = 41 tons (41658 kg) Where fatigue is not a criterion of design (e.g. in formwork design and bridges for temporary use where the number of maximum load cycles is low) the permissible bending stress may be increased to 17.9 tons/in² (2819 kg/cm²). In this case the available bending moment for live load given in Tables 9, 10, 11, 12, 13 and 14 may be increased by the following amounts:

Construction	Increased Available LLBM
	(tons feet)
SS-	(<mark>176</mark>)
SSR	354
DS	349
DSR	710
TS	523
TSR	1062
QS	697
QSR	1415
DD	748
DDR	1500
TD ·	1123
TDR	2250
QD	1495
QDR	3005

Shear capacities can NOT be increased above the value given in the Tables.

TABLE 9 – ACROW PANEL BRIDGE – STANDARD WIDTH LIGHT STEEL DECKING

TABLE OF SHEAR CAPACITY AVAILABLE FOR LIVE LOAD (TONS OF 2,240 LB)

1	SPAN							~ ~, ~+0							
FT.	M.	SS 	SSR	DS	DSR	TS	TSR	QS	OSR	DD	DDR	TD	TDR	QD	QDR
10	3.05	48	48	98	98	148	147	197	196	161	161	243	242	324	323
20	6.10	47	47	96	96	146	144	195	193	159	158	240	239	320	319
30	9.15	46	45	95	94	144	142	193	191	157	156	237	236	317	315
40	12.20	45	44	93	92	142	140	191	188	155	154	235	232	314	311
50	15-25	44	42	92	90	141	138	189	185	153	151	232	229	311	307
60	18.30	43	41	90	88	139	136	187	182	151	149	230	226	308	303
70	21.35	42	40	89	86	137	133	185	179	149	147	227	223	305	300
80	24.40	41	38	87	84	136	131	183	176	147	144	225	220	302	296
90	27.45	39	37	86	82	134	128	181	173	146	142	222	217	299	292
100	30.50	38	36	85	81	132	126	179	171	145	139	219	213	295	287
110	33.35	37	35	83	79	129	122	177	168	142	137	217	210	292	283
120	36-60	36	33	82	78	127	120	.175	165	140	135	215	207	289	279
130	39.65	35	32	80	76	125	118	173	162	138	133	212	204	286	275
140	42.70	34	30	79	74	123	115	171	159	136	130	209	201	283	271
150	45.75	33	29	77	73	121	113	169	156	134	128	207	198	280	267
160	48.80	32	28	76	71	119	110	167	153	132	125	204	195	277	263
170	51.85	31	26	74	69	117	108	165	150	130	123	202	192	274	
180	54.90	30	25	73	67	115	106	163	147	128	120	199	188	274	259
190	57.95	28	24	71	65	113	104	161	144	126	117	196	184		255
200	61.00	27	23	70	62	111	102	159	142	124	114	190		266	251
А								, 50	116	144	I) *†	132	180	262	246

Page 3

TABLE 9 – ACROW PANEL BRIDGE – STANDARD WIDTH LIGHT STEEL DECKING

TABLE OF BENDING MOMENT AVAILABLE FOR LIVE LOAD (TONS (2,240 LB) FEET)

SP/	AN .														
FT.	M.	SS	SSR	DS	DSR	TS	TSR	QS	QSR	DD	DDR	TD	TDR	QD	QDR.
10	3.05	492			_			_					_		
20	6.10	483	_		_	_		_	— ′						
30	9.15	469	969	957	_		 ,		_						
40	12.20	450	946	932											
50	15.25	424	917	900	1883	1376		1852	 -	 -			-		_
60	18-30	395	881	861	1835	1330	_	1798				_	-		
70	21.35	359	830	815	1776	1274	2714	1732	_	1855	: 		_	_	
80	24.40	318	792	764	1708	1212	2630	1658	3566	1782	3834	2742			
90	27.45	273	738	704	1633	1139	2532	1575	3428	1697	3733	2633		3558	•
100	30.50	223	675	637	1547	1060	2425	1478	3297	1604	3620	2510	5535	3408	
110	33.55	166	612	565	1455	970	2302	1374	3149	1500	3496	2376	5370	3242	7242
120	36.60	106	538	485	1352	876	2175	1261	2992	1387	3359	2230	5187	3059	7015
130	39.65		460	397	1239	768	2032	1137	2820	1261	3214	2068	4990	2863	6767
140	42-70		373	306	1120	658	1980	1006	2631	1130	3050	1895	4778	2648	6502
150	45.75		282	204	992	535	1715	863	2429	1086	2880	1712 /	4550	2423	6210
160	48.80	_			856	408	1540	712	2220	836	2696	1512	4310	2180	5912
170	51.85		_		707	258	1354	547	1985	671	2502	1300	4045	1918	5580
180	54.90				550		1108	378	1750	501	2290	1080	3770	1638	5240
190	57-45		_		387		900		1485	318	2075	845	3480	1348	4880
200	61.00				215		675		1225		1865	595	3180	1043	4500
A) 														-Bage 4

^

ਾ ge ⁴

LOADING—HS 20-44 (MS18)

TABLE OF MAXIMUM MOMENTS, SHEARS, AND REACTIONS— SIMPLE SPANS, ONE LANE

Spans in feet; moments in thousands of foot-pounds; shears and reactions in thousands of pounds.

These values are subject to specification reduction for loading of multiple lanes. Impact not included.

		End shear and end			End shear and end
Span	Moment	reaction (a)	Span	Moment	reaction (a)
1	8.0(b)	32.0(b)	42	485.3(b)	56.0(b)
2 3	16.0(b)	32.0(b)	44	520.9(b)	56.7(b)
3	24.0(b)	32.0(b)	46	556.5(b)	57.3(b)
4	32.0(b)	32.0(b)	48	592.1(b)	58.0(b)
5	40.0(b)	32.0(b)	50	627.9(b)	58.5(b)
6	48.0(b)	32.0(b)	52	663.6(b)	59.1(b)
7	56.0(b)	32.0(b)	54	699.3(b)	59.6(b)
8	64.0(b)	32.0(b)	56	735.1(b)	60.0(b)
9	72.0(b)	32.0(b)	58	770.8(b)	60.4(b)
10	80.0(b)	32.0(b)	60	806.5(b)	60.8(b)
11	88.0(b)	32.0(b)	62	842.4(b)	61.2(b)
12	96.0(b)	32.0(b)	64	878.1(b)	61.5(b)
13	104.0(b)	32.0(b)	66	914.0(b)	61.9(b)
14	112.0(b)	32.0(b)	68	949.7(b)	62.1(b)
15	120.0(b)	34.1(b)	70	985.6(b)	62.4(b)
16	128.0(b)	36.0(b)	75	1,075.1(b)	63.1(b)
17	136.0(b)	37.7(b)	80	1,164.9(b)	63.6(b)
18	144.0(b)	39.1(b)	85	1,254.7(b)	64.1(b)
19	152.0(b)	40.4(b)	90	1,344.4(b)	64.5(b)
20	160.0(b)	41.6(b)	95	1,434.1(b)	64.9(b)
21	168.0(b)	42.7(b)	100	1,524.0(b)	65.3(b)
22	176.0(b)	43.6(b)	110	1,703.6(b)	65.9(b)
. 23	184.0(b)	44.5(b)	120	1,883.3(b)	66.4(b)
24	192.7(b)	45.3(b)	130	2,063.1(b)	67.6
25	207.4(b)	46.1(b)	140	2,242.8(b)	70.8
26	222.2(b)	46.8(b)	150	2,475.1	74.0
27	237.0(b)	47.4(b)	160	2,768.0	77.2
28	252.0(b)	48.0(b)	170	3,077.1	80.4
29	267.0(b)	48.8(b)	180	3,402.1	83.6
30	282.1(b)	49.6(b)	190	3,743.1	86.8
31	297.3(b)	50.3(b)	200	4,100.0	90.0
32	312.5(b)	51.0(b)	220	4,862.0	96.4
33	327.8(b)	51.6(b)	240	5,688.0	102.8
34	343.5(b)	52.2(b)	260	6,578.0	109.2
35	361.2(b)	52.8(b)	280	7,532.0	115.6
36	378.9(b)	53.3(b)	300	8,550.0	122.0
37	396.6(b)	53.8(b)			
38	414.3(b)	54.3(b)			
39	432.1(b)	54.8(b)	. 1.		
40	449.8(b)	55.2(b)			

⁽a) Concentrated load is considered placed at the support. Loads used are those stipulated for shear.

⁽b) Maximum value determined by Standard Truck Loading. Otherwise the Standard Lane Loading governs.

Project: Burke, Vt

Contractor: TBuck Construction Inc

Value Engineering Design: Calderwood Engineering Design Computations by: Eric T. Calderwood, PE

Project Notes:

Vermont Agency of Transportation project Number BRF-0269(13)

Vermont State Rte 114 over Dishmill Brook

Bridge Number 13

Temporary Bridge using Acrow 300 Single Single unreinforced Timber Crane Matt Abutments

Design Specification: From Acrow manual for 300 for allowable live loads on system

Timber: NDS for wood construction ASD 2005

Live Load: HS20-44

$$\gamma_{\text{wood}} := 45 \text{ pcf}$$
 $L_{\text{sp}} := 50 \text{ ft}$

$$\gamma_{\text{soil}} := 125 \text{ pcf}$$
 $k_0 := 0.5$

at rest soil pressure coefficient for typical granular backfill

Check Flexure:

$$SS_{50f} := 424 \cdot 2240 \text{ ft-lbf} = 949.76 \text{ ft-kip}$$

Capacity of Single-Single Standard width Bridge for live load translated from Long Tonnes - ft to Kip-Ft

$$SS_{add'} := 176 \cdot 2240 \text{ ft} \cdot \text{lbf} = 394.24 \text{ ft} \cdot \text{kip}$$

Addl Flexural Capacity due to temporary application

$$SS_{moment} := SS_{50f} + SS_{add'l} = 1344 \text{ ft-kip}$$

IM :=
$$min\left(\frac{50 \text{ ft}}{L_{sp} + 125 \text{ ft}}, 30\%\right) = 28.57\%$$

Impact 3.8.2 AASHTO Std Specifications 17th edition

$$LL_{mom} := 627.9 \text{ ft-kip} \cdot (100\% + IM) = 807.3 \text{ ft-kip}$$

Capacity of Bridge is > demand therefor Acrow 300 Single-Single standard width w/ light steel decking is okay for this application

Check Shear:			
$SS_{50v} := 44 \cdot 2240 \text{ lbf}$	=98.56 kip	Bridg	city of Single-Single Standard width e for live load translated from Long es to Kips (shear Cap)
$LL_{shear} := 58.5 \text{ kip} \cdot (1)$.00% + IM) = 75.21	kip	Capacity of Bridge is > demand therefor Acrow 300 Sing Single standard width w/ light steel decking is okay for application
Check Soil Bearing Capac Abutment timber footing distribution beams:	·		
$Acrow_{dead} := \frac{((1)}{(1)}$	• 2.30 + (3) • 0.58 +	- (1) • 2.7 2	$6 + (3) \cdot 1.62 \cdot 2240 \text{ lbf} = 13.0592 \text{ kip}$
$\mathrm{LL}_{\mathrm{React}} \coloneqq rac{\mathrm{LL}_{\mathrm{she}}}{(100\% - 1$	ear ⊢IM) = 58.5 kip		
$A_{width} := 4 ft$	t _{abut} :=	=12 in	
$A_{length} = 16 \text{ ft}$			
$BP_{abut} := \frac{Acrow_{de}}{}$	$A_{\mathrm{width}} + LL_{\mathrm{React}} + A_{\mathrm{width}}$	• A _{length} • 1	$t_{\text{abut}} \cdot \gamma_{\text{wood}} = 1163.1125 \text{ psf}$
			This is pretty much okay on just about any soil

 $Brg_w := (6 \text{ ft} + 5.5 \text{ in}) \cdot 2 = 12.9167 \text{ ft}$

SHEAR DIAGRAM FOR ABUTMENT LOADS

Temporary Pedestrian Bridge -Rte 114 over Dishmill Brook Supporting Calculations

In the Town of

Burke

032-br-15

Prepared for:

TBuck Construction Inc

Calderwood Engineering etc

April, 2015

Photo: Newry Maine, Branch Road over Paine Brook Courtesy of TBuck Construction, Inc & Calderwood Engineering

Project: Burke, Vt.

Contractor: T Buck Construction Inc.

Temp. Bridge Engineering Design: Calderwood Engineering

Design Computations by: Eric T. Calderwood, PE

Project Notes:

VTrans Specifications as required

Temporary Pedestrian Bridge using steel ASTM A7 Post 1934 ie yield strength = 33 ksi for girders Steel bolts - Astm A325 7/8" diameter length as required threadrods - Astm A193 grade B7 (same properties as ASTM A325 bolts)

Design Specification: AASHTO Standard Specifications for Bridge Design 17th edition, 2002 - Allowable stress design to be used for steel construction and concrete abutment footings.

Timber: NDS for wood construction ASD 2005 - APA panel design guide for plywood & OSB

Live Load: Ped Load per AASHTO Standard Specifications 17th edition

$\gamma_{\rm cn} := 150 \text{ pcf}$	$\gamma_{\text{soil}} \coloneqq 120 \text{ pcf}$	Saturated Backfill density	
$\gamma_{\text{pvt}} \coloneqq 140 \text{ pcf}$	$k_0 := 0.5$	At Rest lateral soil pressure	
$\gamma_{wood} := 45 \text{ pcf}$	$H_{LLS} := 0.0 \text{ ft}$	Height of Live Load Surcharge (none req'd for Ped Loading)	2
$E_b := 29000 \text{ ksi}$	Modulus of elasticity of steel	$E_{spf2} := 1400000 \text{ ps}$	si
$F_{yb} := 33 \text{ ksi}$	Steel beam yield	$E_{\rm sr} \coloneqq 29000 \text{ ksi}$	Modulus of Elasticity of Reb
$F_{ys} = 36 \text{ ksi}$	Miscellaneous steel yield		
$F_{yr} = 60 \text{ ksi}$	reinforcing steel yield		
$t_d = 8$ in	reinforcing steel yield	f' _{cb} :=3000 psi	Concrete compression strength for abutment
$p_{swdl} = 20 psf$	sidewalk flooring dead load		blocks
$L_{sp} := 65 \text{ ft}$	Bearing to Bearing span length		
$S_{width} := 5$ ft	sidewalk width		
$D_{width} := 10 \text{ ft}$	Maximum deck width for timber matts		

65' Span Ped Bridge Typical Section

	S.,:	= 542 in ³	I	_{bsw} :=9750 ir	4			
	t _{fbsw} :=	= 1.02 in	L_{ι}	_{inbsw} ≔ 13 ft				
	b _{fbsw} :	= 12.00 in	C_{l}	osw ≔ 1.0				
	t _{wbsw} :	= 0.65 in						
	d _{bsw} :=	= 36.01 in						
	J _{bsw} :=	$\frac{2 \cdot \left(t_{\text{fbsw}}^{3} \cdot b_{\text{fl}}\right)}{2 \cdot \left(t_{\text{fbsw}}^{3} \cdot b_{\text{fl}}\right)}$	$\left(d_{\text{bsw}}\right) + \left(d_{\text{bsw}}\right)$	$-2 \cdot t_{\mathrm{fbsw}}) \cdot t_{\mathrm{wl}}$	3 DSW = 12	1.5993 in ⁴		
	I _{ycsw} :=	$=\frac{b_{fbsw}^{3} \cdot t_{fbsw}}{12}$	=146.88 in	1				
	M _{llsw} :	$=\frac{W_{swLL} \cdot L_{sp}^{2}}{8}$	=950.625 i	n∙kip				
	M _{dlsw} :	$:= \frac{(W_{swb} + W_s)}{}$	wd + W _{pedrail}) 8	$L_{\rm sp}^2$ = 195	8.29 in·k	tip		
	f _{bSW} :=	$= \frac{M_{llsw} + M_{dlsw}}{S_{xcsw}}$	=5.367 ksi					
$F_{bSW} := I$	$min\left(\frac{500}{}\right)$	000000 psi • C S _{xcsw}	$\bullet \underbrace{\left\{ \frac{I_{ycsw}}{L_{unbsw}} \right\}}$	$\left(\sqrt{0.722 \cdot \left(\right)} \right)$	$\left(\frac{J_{\text{bsw}}}{I_{\text{ycsw}}}\right) + $	$9.87 \cdot \left(\frac{d_{\text{bsw}}}{L_{\text{unbsw}}}\right)$	$\left(\frac{1}{10000000000000000000000000000000000$	$F_{yb} = 18.1$
$\Lambda_{\rm LLsw} := \frac{5 \cdot 1}{38}$	$W_{\text{swLL}} \cdot L$ $4 \cdot E_{\text{b}} \cdot I_{\text{x}}$	$\frac{4}{2 \text{sp}} = 0.2131$	in			Allowable stress Allowable flexui stress therefor o	al stress >> a	
						LL deflection of L/1000 (10.6.2)	sidewalk bear	า ~ L/3660 <<
Shear De	esign Sid	ewalk Beam						
(W _{swLL} +	- W _{swb} +	$-W_{\rm swd} + W_{\rm pedra}$	$_{\rm nil}\rangle \cdot {\rm L}_{\rm sp} - 0.6$	8 kgi				
2•	(d _{bsw} –	$\frac{-W_{\text{swd}} + W_{\text{pedra}}}{2 \cdot t_{\text{fbsw}}} \cdot t_{\text{wbsv}}$		O KSI				
:= 0.33 F _{vb}	= 10.89) ksi	shear stress in	sidewalk beam <	shear stress	s allowed in side	valk heam the	refor okay
- 0.33 1 _{yb}	_ 10.07		Silvar Stress III S	MACWAIN DEUIII C.	S. 1641 311 633	, anowed in sidev	ain beain tile	CJOI OKUY

Sidewalk Joists Design: U		d := 6 in	b≔6 in	
Dimension 6x6 joists SPF				
spaced at 12" (crane mat	ts from			
Richmond)				
		2		
$S_{xj} := \frac{d^2 \cdot b}{6} = 36 \text{ in}^3$		$I_{xj} := \frac{d^3 \cdot b}{12} =$	108 in 4	
$\frac{3_{xj}}{6}$ = 30 m		$\frac{1}{x_j} = \frac{1}{12}$	100 III	
A 1 1 26 : 2			0	
$A_j := d \cdot b = 36 \text{ in}^2$		$J_{\rm sp} := S_{\rm ave} = 8$	π	
		d		
$S_{\text{joists}} := 12 \text{ in}$		$\frac{d}{b} = 1$		
		U		
$\omega_{\rm dl} := p_{\rm swdl} \cdot S_{\rm joists} = 2$	0 plf			
$\omega_{ll} := P_{swLL} \cdot S_{joists} = 6$	0 plf			
$M_{\text{joist}} := \frac{\left(\omega_{\text{ll}} + \omega_{\text{dl}}\right) \cdot J}{8}$	sp 640 ft.lbf			
8	O-TO ICIDI			
M _{joist}				
$f_b := \frac{M_{\text{joist}}}{S_{\text{vi}}} = 213.33$	psi			
- XJ				
5 • ω _n • L 4		I.		
$\Delta_{\text{llj}} \coloneqq \frac{5 \cdot \omega_{\text{ll}} \cdot J_{\text{sp}}^{4}}{384 \cdot E_{\text{spf2}} \cdot I_{\text{xj}}}$	=0.0366 in	$\frac{J_{\rm sp}}{\Delta_{\rm lli}} = 262$	5 deflection is less	
$384 \cdot E_{spf2} \cdot I_{xj}$		$\Delta_{ m llj}$	than L/1000 therefor okay	
			therejor okay	
F _b := 575 psi				
$C_r := 1.00$	memhers a	re 6x6 repetetive use factor	does not annly	
G _r := 1.00	members a	re oxo repetetive use juctor	uoes not apply	
C 1 1F	U - C - 4 - 4	5 6 - 2	. 12.2.2 NDC	
$C_d := 1.15$	Use Ca=1.1	5 for 2 month duration of lo	aa 2.3.2 NDS	
$C_t := 1.0$	Use will be	Less than 150 degrees F sus	tained 2.3.3 NDS	
$C_L := 1.0$			eral support is required joists will	
	not attemp	t to roll over		
$C_f := 1.0$	for 6x6s Ta	ble 4D		
$C_i := 1.0$	no incising			
$C_{\rm m} := 1.0$	Table 4D			
C _m 1.0	Tuble 4D			
	$C_L \cdot C_f \cdot C_i \cdot C_m = 6$	(4 DF '	661.25 psi > 50 psi	

nominal 6x6 joists S	SPF #2 Or Dtr
Bearing	
$((0, + (0, +)) \bullet$	
$R_{swj} := \frac{\left(\omega_{ll} + \omega_{dl}\right) \cdot 1}{2}$	$\frac{7sp}{} = 320 \text{ lbf}$
- 12 :	
$L_b := b_{fbsw} = 12 \text{ in}$	
$f_{cperp} := \frac{R_{swj}}{L_b \cdot b} = 4.4$	4 psi
L _b · b	
$C_b := 1.0$	bearing is Located w/in 3" of the end of the joist (conservative assumption)
$C_t := 1.0$	Use will be Less than 150 degrees F sustained 2.3.3 NDS
$C_{\rm m} := 0.67$	Per Table 4D for compression perpendicular to grain
$F_{cperp} := 335 \text{ psi}$	Per Table 4D for compression perpendicular to grain for SPF South
$F'_{cperp} := F_{cperp} \cdot C_{b} \cdot$	$C_{t} \cdot C_{m} = 224.45 \text{ psi}$
Allowable Bearing stress stress therefor okay	is >>>> than applied bearing
Sidewalk Joists Desi	ign: Use
nominal 6x6 joists S Horizontal Shear	SPF #2 or btr
Tionzontal Silear	
$f_v := \frac{R_{swj} \cdot 3}{2 \cdot h \cdot d} = 13.3$	333 psi by definition horizontal shear stress at NA of rectangular section (ref NDS 3.4.2
$\frac{1}{2 \cdot \mathbf{b} \cdot \mathbf{d}} = 13.3$	eqn 3.4-2) - note shear is calculated at the reaction for this joist which is conservative - shear design section is allowed to be taken at a distance d from the support, but that will result in a lower stress and therefor we are not
$F_v := 135 \text{ psi}$	concerned with it.
$C_d := 1.15$	Use Cd=1.15 for 2 month duration of load 2.3.2 NDS
$C_t := 1.0$	Use will be Less than 150 degrees F sustained 2.3.3 NDS
$C_{\rm m} := 1.00$	Per Table 4D for shear parallel with the grain
$F'_{v} := F_{v} \cdot C_{d} \cdot C_{t} \cdot C_{m}$	=155.25 psi
Allowable Horizontal She horizontal shear stress th	ear stress is greater than applied herefor okay

Plywood Decking: use 1/2 plywood decking (sheath	
prywood decking (sneath	"'51
Use APA rated sheathing Exp 1 Design per APA Panel Design Sp used in good condition will be a the OSB directly at the contract	ecification - 5/8" formply - llowed as a substitute for
$EI_{x} := 60000 \frac{lbf \cdot in^{2}}{ft}$ $EI_{y} := 11000 \frac{lbf \cdot in^{2}}{ft}$	All Design Values are from the APA Panel Design Specification Table 4A - OSB 24/0 span rating
$EI_{y} = 11000 \frac{lbf \cdot in^{2}}{ft}$	
$F_b S_x := 300 \frac{\text{III-IDI}}{\text{ft}}$	
$F_b S_y := 97 \frac{\text{in} \cdot \text{lbf}}{\text{ft}}$	
$F_s := 130 \frac{lbf}{ft}$	
F _{cperp} := 115 psi	Not listed in APA panel Design but from engineering judgement and in comparison with plyform which is 210 psi & 335 psi for SPF therefor using engineering judgement 115 psi seems like a reasonable bearing stress to this engineer
$C_d := 1.15$	From APA panel Design section 4.5.1 & 4.5.2
$C_{\rm mbs} := 0.75$	
$C_{\text{mE}} := 0.85$	
$C_{mc} := 0.20$	
$\omega_s := 1.5 \text{ psf}$	Panel Properties from Table 6 for 1/2" panels APA panel design specification
$t_s = 0.500 \text{ in}$	
$A_{s} := 6.0 \frac{\text{in}^{2}}{\text{ft}}$ $I := 0.125 \frac{\text{in}^{4}}{\text{ft}}$ $S := 0.500 \frac{\text{in}^{3}}{\text{ft}}$ $Q := 0.375 \frac{\text{in}^{3}}{\text{ft}}$ $RQ := 4.00 \frac{\text{in}^{2}}{\text{ft}}$	
$I := 0.125 \frac{\text{in}^4}{\text{ft}}$	
$S := 0.500 \frac{\text{in}^3}{\text{ft}}$	
$Q := 0.375 \frac{\text{in}}{\text{ft}}$	Statical Moment
no in	Rolling Shear Constant

grain perpendicular to joists - 3 span condition	$P_{swLL} = 60 \text{ psf}$
$M_{bs} := \frac{(P_{swLL} + \omega_s + 5 psf) \cdot S_{joists}^2}{10} = 79.8 \frac{in \cdot lbf}{ft}$	$f_{bs} := \frac{M_{bs}}{S} = 159.6 \text{ psi}$
$F_b S_x \cdot C_d \cdot C_{mbs} = 258.75 \frac{\text{in} \cdot \text{lbf}}{\text{ft}}$	
$\Delta_{\text{sLL}} \coloneqq \frac{P_{\text{swLL}} \cdot (S_{\text{joists}})^4}{1743 \cdot \text{EI}_x} = 0.001 \text{ in}$	$rac{S_{ m joists}}{\Delta_{ m SLL}}$ = 12104.1667 Deflection is L/12100 < L/1000 therefor okay
$w_{rs} := \frac{20 \frac{\text{in}}{\text{ft}} \cdot F_s}{S_{\text{joists}} - b} = 433.3333 \text{ psf}$	
13dii 13 u 11103	or a one span condition Maximum Allowable niform load in PSF
$F_{\text{sstress}} := \frac{F_{\text{s}} \cdot C_{\text{d}} \cdot C_{\text{mbs}}}{RQ} = 28.0313 \text{ psi}$	llowable Rolling Shear Stress
$f_s := \frac{(P_{swLL} + \omega_s + 5 \text{ psf}) \cdot (S_{joists} - b)}{20 \frac{\text{in}}{\text{ft}} \cdot \text{RQ}} = 4.9875 \text{ ps}$	Si Actual Rolling Shear stress for three span condition Rolling shear stress is << Allowable Rolling shear
$f_{cperp} := \frac{\langle P_{swLL} + \omega_s + 5 \text{ psf} \rangle \cdot S_{joists}}{12 \frac{\text{in}}{\text{ft}} \cdot \text{b}} = 0.9236 \text{ psi}$	stress (Horizontal shear in panels)
$F'_{cperp} := F_{cperp} \cdot C_{mc} = 23 \text{ psi}$	Allowable Bearing stress on panels under wet conditions

total SW floor loading check <20psf therefor okay

Bearing stress << Allowable Bearing stress therefor okay

 $\frac{d \cdot b \cdot \gamma_{wood}}{1 \text{ ft}} + \omega_s + 5 \text{ psf} = 17.75 \text{ psf}$

Ped Rail Design $b_{rail} := 3.5 \text{ in} \qquad d_{rail} := 1.5 \text{ in}$ $b_{post} := 3.5 \text{ in} \qquad d_{post} := 3.5 \text{ in}$ $S_{post} := 4 \text{ fit} \qquad L_{post} := 42 \text{ in} + 0.5 \text{ in} = 3.5417 \text{ ft}$ $w := 50 \text{ plf} \qquad \text{Exchange for a uniform load of Soft for the vection of the upper most rail only or will where List the post spacing per AASHTO STM Spec. 2.7.3.2.2 & 2.7.3.2.3 respectively M_{uy} := \frac{w \cdot S_{post}}{10} = 960 \text{ in} \cdot \text{lbf} \qquad Use 12' 2x's & 4 ft spacing of posts is a final post of the space $					
$b_{post} := 3.5 \text{ in} \qquad d_{post} := 3.5 \text{ in}$ $S_{post} := 4 \text{ ft} \qquad L_{post} := 42 \text{ in} + 0.5 \text{ in} = 3.5417 \text{ ft}$ $w := 50 \text{ plf} \qquad \text{Each rail is designed for a uniform load of SOplf per rail both vertically and horizontally simultaneousl - Posts are designed for the reaction of the upper most rail only or wL where L is the post spacing per AASHTO Std Spec. 2.7.3.2.2 & 2.7.3.2.3 respectively M_{uy} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in} \cdot \text{lbf} \qquad \text{Use } 12^{\circ} 2x' \text{s} & 4 \text{ ft spacing of posts ie} \\ \text{(3 span condition, one span loaded)} M_{ux} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in} \cdot \text{lbf} \qquad \text{Use } 12^{\circ} 2x' \text{s} & 4 \text{ ft spacing of posts ie} \\ \text{(3 span condition, one span loaded)} S_{x} := \frac{b_{rail}^{2} \cdot d_{rail}}{6} = 3.0625 \text{ in}^{3} \qquad S_{y} := \frac{d_{rail}^{2} \cdot b_{rail}}{6} = 1.3125 \text{ in}^{3} f_{bx} := \frac{M_{ux}}{S_{x}} = 313.5 \text{ psi} \qquad f_{by} := \frac{M_{uy}}{S_{y}} = 731.4 \text{ psi}$	Ped Rail Design				
$b_{post} := 3.5 \text{ in} \qquad d_{post} := 3.5 \text{ in}$ $S_{post} := 4 \text{ ft} \qquad L_{post} := 42 \text{ in} + 0.5 \text{ in} = 3.5417 \text{ ft}$ $w := 50 \text{ plf} \qquad \text{Each rail is designed for a uniform load of SOplf per rail both vertically and horizontally simultaneousl - Posts are designed for the reaction of the upper most rail only or wL where L is the post spacing per AASHTO Std Spec. 2.7.3.2.2 & 2.7.3.2.3 respectively M_{uy} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in} \cdot \text{lbf} \qquad \text{Use } 12^{\circ} 2x' \text{s} & 4 \text{ ft spacing of posts ie} \\ \text{(3 span condition, one span loaded)} M_{ux} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in} \cdot \text{lbf} \qquad \text{Use } 12^{\circ} 2x' \text{s} & 4 \text{ ft spacing of posts ie} \\ \text{(3 span condition, one span loaded)} S_{x} := \frac{b_{rail}^{2} \cdot d_{rail}}{6} = 3.0625 \text{ in}^{3} \qquad S_{y} := \frac{d_{rail}^{2} \cdot b_{rail}}{6} = 1.3125 \text{ in}^{3} f_{bx} := \frac{M_{ux}}{S_{x}} = 313.5 \text{ psi} \qquad f_{by} := \frac{M_{uy}}{S_{y}} = 731.4 \text{ psi}$	h ::= 35 in	d := 15 in			
$S_{post} := 4 \text{ ft} \qquad L_{post} := 42 \text{ in} + 0.5 \text{ in} = 3.5417 \text{ ft}$ $w := 50 \text{ plf} \qquad \text{Each rail is designed for a uniform load of 50plf per rail both vertically and horizontally simultaneous! - Posts are designed for the reaction of the upper most rail only or wL where L is the post spacing per AASHTO Std Spec. 2.7.3.2.2 & 2.7.3.2.3 respectively}$ $M_{uy} := \frac{w \cdot S_{post}^2}{10} = 960 \text{ in} \cdot \text{lbf} \qquad Use 12' 2x's & 4 \text{ ft spacing of posts ie} \\ (3 \text{ span condition, one span loaded})}$ $M_{ux} := \frac{w \cdot S_{post}^2}{10} = 960 \text{ in} \cdot \text{lbf} \qquad Use 12' 2x's & 4 \text{ ft spacing of posts ie} \\ (3 \text{ span condition, one span loaded})}$ $S_x := \frac{b_{rail}^2 \cdot d_{rail}}{6} = 3.0625 \text{ in}^3 \qquad S_y := \frac{d_{rail}^2 \cdot b_{rail}}{6} = 1.3125 \text{ in}^3$ $f_{bx} := \frac{M_{ux}}{S_x} = 313.5 \text{ psi} \qquad f_{by} := \frac{M_{uy}}{S_y} = 731.4 \text{ psi}$	orali - olo m	Grail - 110 III			
$w \coloneqq 50 \text{ plf} \qquad \text{Each rail is designed for a uniform load of 50plf per rail both vertically and horizontally simultaneous! - Posts are designed for the reaction of the upper most rail only or wL where L is the post spacing per AASHTO Std Spec. 2.7.3.2.2 & 2.7.3.2.3 respectively M_{uy} \coloneqq \frac{w \cdot S_{post}^2}{10} = 960 \text{ in lbf} \qquad \text{Use } 12' 2x' \text{s & 4 ft spacing of posts ie } \\ (3 \text{span condition, one span loaded}) M_{ux} \coloneqq \frac{w \cdot S_{post}^2}{10} = 960 \text{ in lbf} \qquad \text{Use } 12' 2x' \text{s & 4 ft spacing of posts ie } \\ (3 \text{span condition, one span loaded}) S_x \coloneqq \frac{b_{rail}^2 \cdot d_{rail}}{6} = 3.0625 \text{ in}^3 \qquad S_y \coloneqq \frac{d_{rail}^2 \cdot b_{rail}}{6} = 1.3125 \text{ in}^3 f_{bx} \coloneqq \frac{M_{ux}}{S_x} = 313.5 \text{ psi} \qquad f_{by} \coloneqq \frac{M_{uy}}{S_y} = 731.4 \text{ psi}$	$b_{post} := 3.5 \text{ in}$	$d_{post} = 3.5 \text{ in}$	ı		
and horizontally simultaneousl - Posts are designed for the reaction of the upper most rail only or wL where L is the post spacing per AASHTO Std Spec. 2.7.3.2.2 & 2.7.3.2.3 respectively $M_{uy} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in lbf} \qquad Use 12' 2x's & 4 \text{ ft spacing of posts ie} \\ (3 \text{ span condition, one span loaded})$ $M_{ux} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in lbf} \qquad Use 12' 2x's & 4 \text{ ft spacing of posts ie} \\ (3 \text{ span condition, one span loaded})$ $S_{x} := \frac{b_{rail}^{2} \cdot d_{rail}}{6} = 3.0625 \text{ in}^{3} \qquad S_{y} := \frac{d_{rail}^{2} \cdot b_{rail}}{6} = 1.3125 \text{ in}^{3}$ $f_{bx} := \frac{M_{ux}}{S_{x}} = 313.5 \text{ psi} \qquad f_{by} := \frac{M_{uy}}{S_{y}} = 731.4 \text{ psi}$	$S_{post} := 4 \text{ ft}$	$L_{post} := 42 \text{ in}$	+ 0.5 in = 3.5417 ft		
$M_{ux} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in lbf}$ $S_{x} := \frac{b_{rail}^{2} \cdot d_{rail}}{6} = 3.0625 \text{ in}^{3}$ $S_{y} := \frac{d_{rail}^{2} \cdot b_{rail}}{6} = 1.3125 \text{ in}^{3}$ $f_{bx} := \frac{M_{ux}}{S_{x}} = 313.5 \text{ psi}$ $f_{by} := \frac{M_{uy}}{S_{y}} = 731.4 \text{ psi}$	w := 50 plf	and horizontally sim the upper most rail o	ultaneousl - Posts are designed for to only or wL where L is the post spacin	he reaction of	
$M_{ux} := \frac{w \cdot S_{post}^{2}}{10} = 960 \text{ in lbf}$ $S_{x} := \frac{b_{rail}^{2} \cdot d_{rail}}{6} = 3.0625 \text{ in}^{3}$ $S_{y} := \frac{d_{rail}^{2} \cdot b_{rail}}{6} = 1.3125 \text{ in}^{3}$ $f_{bx} := \frac{M_{ux}}{S_{x}} = 313.5 \text{ psi}$ $f_{by} := \frac{M_{uy}}{S_{y}} = 731.4 \text{ psi}$	vv. S 2				
$S_{x} := \frac{b_{rail}^{2} \cdot d_{rail}}{6} = 3.0625 \text{ in}^{3} \qquad S_{y} := \frac{d_{rail}^{2} \cdot b_{rail}}{6} = 1.3125 \text{ in}^{3}$ $f_{bx} := \frac{M_{ux}}{S_{x}} = 313.5 \text{ psi} \qquad f_{by} := \frac{M_{uy}}{S_{y}} = 731.4 \text{ psi}$	$M_{uy} := \frac{W \cdot S_{post}}{10} =$	960 in·lbf	7 . 7 .		
$f_{bx} := \frac{M_{ux}}{S_x} = 313.5 \text{ psi}$ $f_{by} := \frac{M_{uy}}{S_y} = 731.4 \text{ psi}$	$M_{ux} := \frac{w \cdot S_{post}^{2}}{10} =$	960 in·lbf			
$f_{bx} := \frac{M_{ux}}{S_x} = 313.5 \text{ psi}$ $f_{by} := \frac{M_{uy}}{S_y} = 731.4 \text{ psi}$	$b_{rail}^2 \cdot d_{rail}$	2.0625 :- 3	d _{rail} ² • b _{rail} 1 2125 : ³		
y y	$S_x = {6}$	3.0625 In S _y	======================================		
$S_{\text{xpost}} := \frac{b_{\text{post}}^2 \cdot d_{\text{post}}}{6} = 7.1458 \text{ in}^3$	$f_{bx} := \frac{M_{ux}}{S_x} = 313.5$	psi f _{by}	$:=\frac{M_{uy}}{S_{v}} = 731.4 \text{ psi}$		
$S_{xpost} := \frac{b_{post} \cdot b_{post}}{6} = 7.1458 \text{ in}^3$	h ² .d				
	$S_{\text{xpost}} := \frac{b_{\text{post}} \cdot b_{\text{post}}}{6}$	$= 7.1458 \text{ in}^3$			

747	rom Table 4a DS
$C_r := 1.00$	
$C_d := 1.25$	Use Cd=1.25 for "construction" level duration (7 days sustained)
$C_t := 1.0$	Use will be Less than 150 degrees F sustained 2.3.3 NDS
$C_L := 1.0$	Ends and compression face are prevented from rotation via plank fastening/ end support blocking NDS 3.3.3.3 mid span blocking is also provided
$C_f = 1.5$	for 2x4s Table 4A - 2x6 railings may be used in lieu of 2x4 railings at the contractors option - also Cf for 4x4 post is 1.5 as well
$C_i := 1.0$	no incising
$C_{\rm m} \coloneqq 1.0$	$F_b \cdot C_f = 1162.5 \mathrm{psi}$ <1150 psi therefor Cm= 1.0 (Table 4A)
$C_{\text{fux}} \coloneqq 1.0$	not being used flat
$C_{\text{fuy}} \coloneqq 1.1$	
$F'_{by} := F_b \cdot C_r \cdot C_d \cdot C$	$_{t} \cdot C_{L} \cdot C_{f} \cdot C_{i} \cdot C_{m} \cdot C_{fuy} = 1598.4375 \text{ psi}$
$F'_{bx} := F_b \cdot C_r \cdot C_d \cdot C$	$_{t} \cdot C_{L} \cdot C_{f} \cdot C_{i} \cdot C_{m} \cdot C_{fux} = 1453.125 \text{ psi}$
$F'_{bx} := F_b \cdot C_r \cdot C_d \cdot C_r$ $E'_{min} := 400000 \text{ ps}$	
	i From Table 4a NDS
$E'_{min} := 400000 \text{ psi}$ $l_e := 1.63 \cdot S_{post} + 3 \cdot S_{post}$	i From Table 4a NDS
E' _{min} := 400000 psi	i From Table 4a NDS • $d_{rail} = 6.895 \text{ ft}$ 3.3.3 NDS • 183 3.3.3.6 NDS
$E'_{min} := 400000 \text{ ps}$ $l_e := 1.63 \cdot S_{post} + 3 \cdot l_{post}$ $R_b := \sqrt{\frac{l_e \cdot d_{rail}}{b_{rail}^2}} = 3 \cdot l_{post}$	i From Table 4a NDS • $d_{rail} = 6.895 \text{ ft}$ 3.3.3 NDS • 1.183 3.3.3.6 NDS = $1.47377.3266 \text{ psi}$

$M_{post} := w \cdot S_{post} \cdot I$	$p_{\text{post}} = 8500 \text{ in lbf}$
$f_{cpost} := \frac{w \cdot S_{post}}{b_{post} \cdot d_{post}}$	-= 16.3265 psi
$f_{bpost} := \frac{M_{post}}{S_{xpost}} = 13$	189.5044 psi
$F'_{bx} := F_b \cdot C_r \cdot C_d \cdot C_{d} \cdot$	$C_t \cdot C_L \cdot C_f \cdot C_i \cdot C_m \cdot C_{fux} = 1453.125 \text{ psi}$
$F_c := 1000 \text{ psi}$	From Table 4a NDS
$C_{mc} := 0.80$	From Table 4a NDS
$C_{fc} := 1.15$	From Table 4a NDS
$F_{\text{starC}} := F_{c} \cdot C_{d} \cdot C_{m}$	$_{c} \cdot C_{t} \cdot C_{fc} \cdot C_{i} = 1150 \text{ psi}$ 3.7.1 NDS
$k_e := 2.1$	Effective length factor for cantilevered columns per NDS appendix G
$l_{epost}\!:=\!k_{e}\!\bullet\!L_{post}\!=\!$	7.4375 ft
$F_{cE} := \frac{0.822 \cdot E'_{mir}}{\left(\frac{l_{epost}}{d_{end}}\right)^2}$	== 505.6517 psi 3.7.1 NDS
$c := 0.8 \qquad 3.7.1$	NDS (for sawn lumber)
$C_{p} := \frac{1 + \frac{F_{cE}}{F_{starC}}}{2 \cdot c} - F'_{c} := F_{starC} \cdot C_{p} = 4$	$\sqrt{\left(\frac{1+\frac{F_{cE}}{F_{starC}}}{2 \cdot c}\right)^2 - \frac{F_{cE}}{F_{starC}}} - \frac{F_{cE}}{c} = 0.3899$ $3.7.1 \text{ NDS}$ 48.3523 psi $3.7.1 \text{ NDS}$
2	
$\left(\frac{f_{cpost}}{F'_{c}}\right)^{2} + \frac{1}{F'_{c}}$	$\frac{f_{\text{bpost}}}{1 - \frac{f_{\text{cpost}}}{F_{\text{cp}}}} = 0.8472$ 3.9.2 NDS <1.0 therefor - combined flexure & axial stress okay for 4x4 posts at 4' spacing

$$P := w \cdot S_{post} = 200 \text{ lbf}$$

$$C := \frac{P \cdot (L_{post} - 0.75 \text{ in})}{12 \text{ in}} = 695.8333 \text{ lbf}$$

$$T := \frac{P \cdot (L_{post} - 12.75 \text{ in})}{12 \text{ in}} = 495.8333 \text{ lbf}$$

Reaction of 2x2 is carried to OSB and is transmitted to the 6x6 decking through shear by inspection no further analysis is required

$$C_{kicker} := \frac{C}{\sin(45 \text{ deg})} = 984.0569 \text{ lbf}$$

$$f'_{ckick} := \frac{C_{kicker}}{3.5 \text{ in} \cdot 1.5 \text{ in}} = 187.4394 \text{ psi}$$

$$F_c = 1000 \text{ psi}$$
 $F_{starC} = 1150 \text{ psi}$

$k_e := 1.0$	Effective length fo	actor for pinned pinned colu	mns per NDS appendix G	
$l_{ekick} := k$	$e^{\bullet} \frac{12 \text{ in}}{\sin(45 \text{ deg})} = 1.41$	42 ft		
$F_{cE} := \frac{0.8}{\left(\frac{1}{10000000000000000000000000000000000$	$\frac{822 \cdot E'_{min}}{l_{ekick}} = 2568.75 \text{ p}$ $\frac{l_{ekick}}{1.5 \text{ in}}$	osi 3.7.1 NDS		
c:=0.8	3.7.1 NDS (for sawn lu	mber)		
1+ C _p :=	$\frac{F_{cE}}{F_{starC}} = \sqrt{\frac{1 + \frac{F_{cE}}{F_{starC}}}{2 \cdot c}}$	$\left \frac{F_{cE}}{C} \right ^{2} - \frac{F_{cE}}{F_{starC}} = 0.884$	12 3.7.1 NDS	
$F'_c := F_{sta}$	$_{\text{arC}} \cdot C_{\text{p}} = 1016.7729 \text{ ps}$	i 3.7.1 NDS	Kicker Capacity okay as f'c< <f'c okay<="" td="" therefor=""><td></td></f'c>	
	ing Capacity = 120 lbf таы	e 11n	C _d = 1.25	
$N_{reg'd} := -$	$\frac{C_{\text{kicker}}}{Z_{16d} \cdot C_d} = 6.5604$	Use (2) kickers and use	· (4)	
	Z _{16d} • C _d	16d nails in each		

$R_{abut} := \frac{\left(W_{swLL} + W_{swb} + W_{swd} + W_{pedrail}\right) \cdot L_{sp}}{2}$	= 14.92 kip
$W_{abut} = 2 \text{ ft}$	
$L_{abut} := 8 \text{ ft}$	
R _{abut} • 2	
$A_{\text{brgpressure}} := \frac{R_{\text{abut}} \cdot 2}{W_{\text{abut}} \cdot L_{\text{abut}}} = 1864.69 \text{ psf}$	
$M_{abut} := \frac{A_{brgpressure} \cdot W_{abut} \cdot S_{ave}^2}{8} = 358.02 \text{ in k}$	ip
$A_{\text{stt}} = 0.31 \text{ in}^2 \cdot 4 = 1.24 \text{ in}^2$	
$f'_c := 3000 \text{ psi}$	
	E
$E_c := 57000 \cdot \sqrt{f'_c \cdot psi} = 3122018.58 psi$	$n := \frac{E_{sr}}{E_c} = 9.2889$
$C_{rebar} := 1.5 \text{ in}$ $\phi_{rebar} := 0.625 \text{ in}$	
t _{conc} := 16 in	

Cracked Ne	eutral Axis Flexure:				
A _{stran}	$_{\rm s} := A_{\rm stt} \cdot n = 11.$	5182 in ²	area of steel transformed to co	ncrete	
$c_{cr} :=$	3.2414 in		distance to cracked neutral axis (assumed)	S	
**	$C_{\text{rebar}} + \frac{\varphi_{\text{rebar}}}{2} =$	_1 0125 in	(ussumeu)		
y _{sb} .–	C _{rebar} + 2	– 1.0123 III			
y_{comp}	$b := t_{conc} - \frac{c_{cr}}{2} =$:14.3793 in			
A_{comp}	$c_{cr} \cdot W_{abut} =$	= 77.7936 in ²			
¥7. •-	$A_{compbl} \cdot y_{compb}$	$_{b} + A_{strans} \cdot y_{sb}$	– 12 7586 in		
y bar •-	$= \frac{A_{\text{compbl}} \cdot y_{\text{compbl}}}{A_{\text{compbl}}} -$	+ A _{strans}	- 12.7 300 III		
$c_{cr} :=$	$t_{\rm conc} - y_{\rm bar} = 3.2$	2414 in			
	$(c^3 \cdot W)$		$(y_{\rm bb} - y_{\rm bar})^2 + A_{\rm strans} \cdot (y_{\rm sb} - y_{\rm bar})^2$	2	
	\Cr \ahiit/			, = 4	
I _{cr} := -	12 +	$A_{compbl} \cdot (y_{comp})$	$(y_{sb} - y_{bar}) + A_{strans} \cdot (y_{sb} - y_{sb})$	$v_{\rm bar}$) = 1652.53 in ⁴	
	12				
	12				
	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$				
	12				
S _{crstl} :	$= \frac{I_{cr}}{(y_{bar} - y_{sb}) \cdot r}$	$=16.25 \text{ in}^3$	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_t}$	= 509.82 in ³	
S _{crstl} :	12	$=16.25 \text{ in}^3$	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_{t}}$		
S_{crstl} : $f_{ss} := -$	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $\frac{M_{abut}}{S_{crstl}} = 22.028$	_= 16.25 in ³ 3 ksi	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_t}$	= 509.82 in ³	
S_{crstl} : $f_{ss} := -$	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $\frac{M_{abut}}{S_{crstl}} = 22.028$	_= 16.25 in ³ 3 ksi	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_t}$	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := -$	$= \frac{I_{cr}}{(y_{bar} - y_{sb}) \cdot r}$	_= 16.25 in ³ 3 ksi	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_{t}}$ $F_{t} := 24 \text{ ksi}$	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := -$	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $\frac{M_{abut}}{S_{crstl}} = 22.028$	_= 16.25 in ³ 3 ksi	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_{t}}$ $F_{t} := 24 \text{ ksi}$	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := f_{conc}$::	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $= \frac{M_{abut}}{S_{crstl}} = 22.028$ $= \frac{M_{abut}}{S_{crconc}} = 0.702$	= 16.25 in ³ 3 ksi 22 ksi	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_t}$ $F_t := 24 \text{ ksi}$ $F_c := 0.4 \cdot f'_c = 1.2 \text{ ksi}$	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := f_{conc}$::	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $= \frac{M_{abut}}{S_{crstl}} = 22.028$ $= \frac{M_{abut}}{S_{crconc}} = 0.702$ e stress in the rebar is the sign therefor okay for the stress of the s	= 16.25 in ³ 3 ksi 22 ksi is < 24 ksi & Compres 16" deep abutment	$S_{crconc} := \frac{I_{cr}}{t_{conc} - y_{t}}$ $F_{t} := 24 \text{ ksi}$	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := f_{conc}$::	$= \frac{I_{cr}}{(y_{bar} - y_{sb}) \cdot r}$ $= \frac{M_{abut}}{S_{crstl}} = 22.028$ $= \frac{M_{abut}}{S_{crconc}} = 0.70$ e stress in the rebar in	= 16.25 in ³ 3 ksi 22 ksi is < 24 ksi & Compres 16" deep abutment	$S_{crconc} \coloneqq rac{I_{cr}}{t_{conc} - y_t}$ $F_t \coloneqq 24 \text{ ksi}$ $F_c \coloneqq 0.4 \cdot f'_c = 1.2 \text{ ksi}$ essive stress in the concrete is <	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := f_{conc}$::	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $= \frac{M_{abut}}{S_{crstl}} = 22.028$ $= \frac{M_{abut}}{S_{crconc}} = 0.702$ e stress in the rebar is the sign therefor okay for the stress of the s	= 16.25 in ³ 3 ksi 22 ksi is < 24 ksi & Compres 16" deep abutment	$S_{crconc} \coloneqq rac{I_{cr}}{t_{conc} - y_t}$ $F_t \coloneqq 24 \text{ ksi}$ $F_c \coloneqq 0.4 \cdot f'_c = 1.2 \text{ ksi}$ essive stress in the concrete is <	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := f_{conc}$::	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $= \frac{M_{abut}}{S_{crstl}} = 22.028$ $= \frac{M_{abut}}{S_{crconc}} = 0.702$ e stress in the rebar is the sign therefor okay for the stress of the s	= 16.25 in ³ 3 ksi 22 ksi is < 24 ksi & Compres 16" deep abutment	$S_{crconc} \coloneqq rac{I_{cr}}{t_{conc} - y_t}$ $F_t \coloneqq 24 \text{ ksi}$ $F_c \coloneqq 0.4 \cdot f'_c = 1.2 \text{ ksi}$ essive stress in the concrete is <	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := f_{conc}$::	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $= \frac{M_{abut}}{S_{crstl}} = 22.028$ $= \frac{M_{abut}}{S_{crconc}} = 0.702$ e stress in the rebar is the sign therefor okay for the stress of the s	= 16.25 in ³ 3 ksi 22 ksi is < 24 ksi & Compres 16" deep abutment	$S_{crconc} \coloneqq rac{I_{cr}}{t_{conc} - y_t}$ $F_t \coloneqq 24 \text{ ksi}$ $F_c \coloneqq 0.4 \cdot f'_c = 1.2 \text{ ksi}$ essive stress in the concrete is <	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr
S_{crstl} : $f_{ss} := f_{conc}$::	$= \frac{I_{cr}}{\langle y_{bar} - y_{sb} \rangle \cdot r}$ $= \frac{M_{abut}}{S_{crstl}} = 22.028$ $= \frac{M_{abut}}{S_{crconc}} = 0.702$ e stress in the rebar is the sign therefor okay for the stress of the s	= 16.25 in ³ 3 ksi 22 ksi is < 24 ksi & Compres 16" deep abutment	$S_{crconc} \coloneqq rac{I_{cr}}{t_{conc} - y_t}$ $F_t \coloneqq 24 \text{ ksi}$ $F_c \coloneqq 0.4 \cdot f'_c = 1.2 \text{ ksi}$ essive stress in the concrete is <	= 509.82 in ³ 8.15.2.2 for Grade 60 rebar	si concr